SPINNER
Antenna Monitoring System

Engineered to Detect Failures Early and Safeguard Your Infrastructure

HIGH FREQUENCY PERFORMANCE WORLDWIDE
www.spinner-group.com
Radio and television broadcasters worldwide rely on their systems to deliver content to listeners and viewers. But though their infrastructure may be robust, it isn’t invulnerable. Degradation can occur as a result of long-term use and environmental stress. Feeder cables can be damaged by strong winds, ice, or corrosion. Problems can also arise from improper installation, RF overloads, or lightning strikes.

Over the long term, these problems can cause the site to go off-air or even lead to fire, thus completely disabling the broadcast system. Operators therefore need a reliable early failure detection system that pinpoints problems with cables, splitters, or antennas at an early stage before they can cause more serious damage. The SPINNER Antenna Monitoring System (AMS) does all this and more.

The AMS is engineered to detect flaws in broadcast transmission systems and alert you to a problem before damage is done. It helps you stay on the air day in, day out.

This SPINNER solution monitors the entire antenna system, from patch panels across feeder cables all the way to the final dipoles. Recently patented measurement equipment detects even the slightest signs of moisture penetration, triggering an alarm both locally on warning lamps and remotely via an SNMP interface. All events are permanently recorded and can be reviewed from anywhere via a user-friendly web interface.
Off-air time isn’t just a technical issue. The financial cost of repairs and claims brought by content providers can also be huge. By helping you avoid these pitfalls, the AMS gives you enormous value for money.
Features

- Compact design
- Fast and easy installation
- All components housed at a single indoor location
- No invasive changes to the system
- No signal distortion, antenna pattern unaffected

Control Unit
For analyzing the RF signal received from the AMS U-links or AMS line section

AMS U-Link
Mounted in SPINNER patch panels

AMS Test Adaptor
Simulates arc and moisture penetration

AMS Line Section
to be mounted in any on rigid line run
Part Numbers

<table>
<thead>
<tr>
<th>BASIC NUMBER</th>
<th>PRODUCT</th>
<th>SIZE</th>
<th>ACCESSORIES</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>XXX</td>
<td>C</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Test Adaptor
- 010

Control Unit for FM
- 020

Control Unit for VHF
- 030

Control Unit for UHF
- 040

AMS U-Links

<table>
<thead>
<tr>
<th>AMS Line Section</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5/8” USL-D</td>
<td>1</td>
</tr>
<tr>
<td>3 1/8” EIA</td>
<td>3</td>
</tr>
<tr>
<td>4 1/2” EIA</td>
<td>4</td>
</tr>
<tr>
<td>6 1/8” EIA</td>
<td>7</td>
</tr>
</tbody>
</table>

AMS U-Links with Accessories
- with AMS U-Link Interlock 1
- with AMS U-Link Interlock 2
- with AMS Line Section

Quantity of Accessories
- 1
- 2
- 3

internally filled by SPINNER
Interfaces

- Local signaling via LEDs and status relays
- Interlock relays for connecting to transmitter interlock loops
- Remote signaling via SNMP and web interface
Technical Data

Control Unit

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>24 VDC +/- 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current, Max.</td>
<td>0.85 A</td>
</tr>
<tr>
<td>Mains Adaptor Voltage</td>
<td>90 VAC to 264 VAC, 47 to 63 Hz, 127 VDC to 370 VDC</td>
</tr>
<tr>
<td>Mains Adaptor Power Consumption, Max.</td>
<td>30 W</td>
</tr>
<tr>
<td>Weight</td>
<td>1.6 kg</td>
</tr>
<tr>
<td>Dimensions (L x W x H) mm</td>
<td>158 x 483 x 44 (19", 1RU)</td>
</tr>
</tbody>
</table>

U-Link

<table>
<thead>
<tr>
<th>Interface</th>
<th>158 USL-D</th>
<th>68 USL-D</th>
<th>98 USL-D</th>
<th>120 USL (HP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>87.5 MHz to 108 MHz</td>
</tr>
<tr>
<td></td>
<td>174 MHz to 254 MHz</td>
</tr>
<tr>
<td></td>
<td>470 MHz to 860 MHz</td>
</tr>
<tr>
<td>Proof Voltage, Max.</td>
<td>7 kV</td>
<td>13 kV</td>
<td>19 kV</td>
<td>25 kV</td>
</tr>
<tr>
<td>Average Power Capability, Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td>20.0 kW</td>
<td>51.0 kW</td>
<td>98.0 kW</td>
<td>169.0 kW</td>
</tr>
<tr>
<td>254 MHz</td>
<td>13.5 kW</td>
<td>34.0 kW</td>
<td>67.0 kW</td>
<td>116.0 kW</td>
</tr>
<tr>
<td>860 MHz</td>
<td>7.0 kW</td>
<td>17.5 kW</td>
<td>35.0 kW</td>
<td>60.0 kW</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Weight</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td>Dimensions (L x W x H) mm</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxxx</td>
</tr>
</tbody>
</table>

Line Sections

<table>
<thead>
<tr>
<th>Interface</th>
<th>1 5/8" EIA</th>
<th>3 1/8" EIA</th>
<th>4 1/2" EIA</th>
<th>6 1/8" EIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>87.5 MHz to 108 MHz</td>
</tr>
<tr>
<td></td>
<td>174 MHz to 254 MHz</td>
</tr>
<tr>
<td></td>
<td>470 MHz to 860 MHz</td>
</tr>
<tr>
<td>Proof Voltage, Max.</td>
<td>7 kV</td>
<td>13 kV</td>
<td>19 kV</td>
<td>25 kV</td>
</tr>
<tr>
<td>Average Power Capability, Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td>20.0 kW</td>
<td>51.0 kW</td>
<td>98.0 kW</td>
<td>140.0 kW</td>
</tr>
<tr>
<td>254 MHz</td>
<td>13.5 kW</td>
<td>34.0 kW</td>
<td>64.0 kW</td>
<td>92.0 kW</td>
</tr>
<tr>
<td>860 MHz</td>
<td>7.0 kW</td>
<td>17.5 kW</td>
<td>35.0 kW</td>
<td>47.0 kW</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Weight</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td>Dimensions (L x W x H) mm</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxxx</td>
</tr>
</tbody>
</table>
SPINNER GmbH
Headquarters
Erzgiessereistr. 33
80335 Munich
GERMANY
Phone: +49 89 12601-0
Fax: +49 89 12601-1292
info@spinner-group.com
www.spinner-group.com

OOO SPINNER Elektrotechnik
Kozhevnicheskaja str. 1, bld. 1
Office 420
115114 Moscow
RUSSIA
Phone: + 7 495 6385 321
Fax: + 7 499 2353 358
info-russia@spinner-group.com

SPINNER Nordic AB
Kräketorgsgatan 20
43153 Mölndal
SWEDEN
Phone: +46 31 7061670
Fax: +46 31 7061679
info-nordic@spinner-group.com

SPINNER Austria GmbH
Triester Str. 190
1230 Vienna
AUSTRIA
Phone: +43 1 66277 51
Fax: +43 1 66277 5115
info-austria@spinner-group.com

SPINNER Electrotécnica S.L.
c/ Perú, 4 – Local nº 15
28230 Las Rozas (MADRID)
SPAIN
Phone: +34 91 6305 842
Fax: +34 91 6305 838
info-iberia@spinner-group.com

SPINNER France S.A.R.L.
24 Rue Albert Priolet
78100 St. Germain en Laye
FRANCE
Phone: +33 1 74 13 85 24
info-france@spinner-group.com

SPINNER ICT Inc.
5126 S. Royal Atlanta Drive
Tucker, GA 30084-3052
USA
Phone: +1 770 2636 326
Fax: +1 770 9343 384
info-atlanta@spinner-group.com

SPINNER Telecommunication
Devices (Shanghai) Co., Ltd.
351 Lian Yang Road
Songjiang Industrial Zone
Shanghai 201613
P.R. CHINA
Phone: +86 21 577 45377
Fax: +86 21 577 40962
info-china@spinner-group.com

SPINNER Telecommunication
Devices (Shanghai) Co., Ltd.
351 Lian Yang Road
Songjiang Industrial Zone
Shanghai 201613
P.R. CHINA
Phone: +86 21 577 45377
Fax: +86 21 577 40962
info-china@spinner-group.com

SPINNER UK Ltd.
Suite 8 Phoenix House
Golborne Enterprise Park,
High Street
Golborne, Warrington
WA3 3DP
UNITED KINGDOM
Phone: +44 1942 275222
Fax: +44 1942 275221
info-uk@spinner-group.com

www.spinner-group.com