

www.microwavejournal.com/articles/44660-spinner-launches-premium-05-mm-test-accessories-for-ultra-high-frequency-measurements-up-to-250-ghz

SPINNER Launches Premium 0.5 mm Test Accessories for Ultra-High Frequency Measurements up to 250 GHz

September 10, 2025

SPINNER is enabling engineers, researchers and manufacturers to fully leverage the capabilities of the new 0.5 mm connector system for measurements up to 250 GHz, with a comprehensive range of premium test accessories. The portfolio includes high-end adapters, cable connectors, PCB connectors and more.

SPINNER GmbH collaborated with Keysight Technologies, Inc. to develop the new 0.5 mm test accessories. To ensure maximum versatility, SPINNER also offers specialized adapters from 0.5 to 0.8 mm, giving 0.5 mm users access to the established 0.8 mm ecosystem for applications where 167 GHz is sufficient. Pushing the limits, SPINNER enables customers to harness the full physical potential of the 0.8 mm connector system up to 167 GHz — backed by fully traceable calibration and verification kits, connector gauges, adapters, cable connectors, PCB connectors, rotary joints and more.

Dr. Anton Lindner, director product development of SPINNER said: "Developed in close collaboration with Keysight, SPINNER's premium 0.5 mm test accessories — combined with our proven 0.8 mm 167 GHz portfolio — are the perfect fit for Keysight's new 170 GHz and 250 GHz frequency extenders with a 0.5 mm interface. This powerful combination gives users access to seamless single-sweep measurements at the very highest frequencies, unlocking new possibilities in mmWave RF, silicon photonics and other cutting-edge applications."

David Tanaka, product manager at Keysight, said, "Through our close collaboration with SPINNER, engineers now have a complete 0.5 mm ecosystem up to 250 GHz and seamless compatibility with 0.8 mm solutions to 167 GHz. Together, we're giving customers the accuracy and confidence required for next-generation semiconductor and sub-THz measurements."